

Tauchmotorpumpen

Abwasser

Häusliche Anwendung

Gewerbliche Anwendung

Industrielle Anwendung

LEISTUNGSBEREICH

- Durchfluss bis zu 650 l/min (39 m³/h)
- Förderhöhe bis zu 14 m

EINSATZBEREICH

- 5 m max. Eintauchtiefe (mit ausreichend langem Kabel)
- Temperatur der zu fördernden Flüssigkeit +40 °C
- Feststoff Durchgang:
 - bis zu **Ø 40 mm** bei VX /35
 - bis zu **Ø 50 mm** bei VX /50
- Mindesteintauchtiefe für den Dauerlauf:
 - 280 mm bei VX /35
 - 300 mm bei VX /50

BAU UND SICHERHEITS NORMEN

- Stromkabel Länge:
 - 5 m bei VX8-10/35, VX8-10/50
 - 10 m bei VX15/35, VX15/50
- Schwimmerschalter bei einphasiger Ausführung

EN 60335-1 EN 60034-1 ϵ IEC 60335-1 IEC 60034-1 **CEI 61-150 CEI 2-3**

ZERTIFIZIERUNGEN

Unternehmen mit DNV zertifiziertem Managementsystem ISO 9001: QUALITÄT

INSTALLATION UND ANWENDUNG

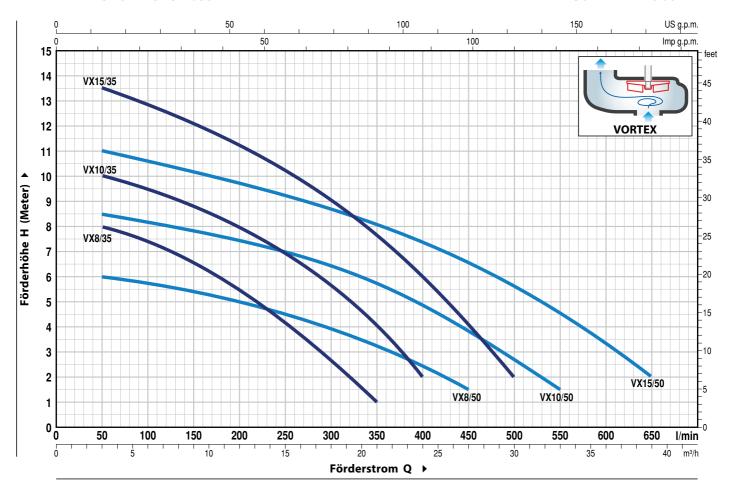
VX Pumpen sind geeignet für den Einsatz in häuslichen, gewerblichen und industriellen Anwendungen, bei denen das Wasser, wie Grundwasser, Oberflächenwasser und Abwasser, suspendierte Feststoffe enthält mit einem Durchmesser bis zu 50 mm.

Sie eignen sich unter anderem zur Entwässerung von überfluteten Bereichen wie Kellern, Tiefgaragen, Autowaschanlagen, zur Entleerung von Klärgruben und zur Abwasserentsorgung.

Diese Pumpen zeichnen sich durch ihre Zuverlässigkeit aus, insbesondere unter automatischen Betriebsbedingungen in ortsfesten Anlagen.

PATENTE - MARKEN - MODELLE

- Patent Nr. EP2313658 Patent Nr. IT0001428923


OPTIONEN AUF ANFRAGE

- VX8-10 mit Kabellänge 10 m
 - Achtung: Die Norm EN 60335-2-41 setzt voraus, dass das Stromkabel für Außenanwendungen mind. 10 m lang sein muss
- Einphasige Ausführung ohne Schwimmerschalter
- Andere Spannungen oder 60 Hz Frequenz

KENNLINIEN UND LEISTUNGSDATEN

50 Hz n= 2900 min⁻¹

M	ODELL	LEISTU	NG (P2)	m³/h	0	3	6	12	18	21	24	27	30	33	36	39
Einphasig	Dreiphasig	kW	HP	Q I/min	0	50	100	200	300	350	400	450	500	550	600	650
VXm 8/35	VX 8/35	0.55	0.75		9	8	7.5	5.5	2.7	1						
VXm 10/35	VX 10/35	0.75	1		11	10	9.5	8	5.7	4	2					
VXm 15/35	VX 15/35	1.1	1.5		14	13.5	12.8	11.2	9	7.7	6	4	2			
VXm 8/50	VX 8/50	0.55	0.75	H Meter	6.5	6	5.8	5	4	3.3	2.5	1.5				
VXm 10/50	VX 10/50	0.75	1		9	8.5	8.2	7.5	6.5	5.8	5	3.8	2.5	1.5		
VXm 15/50	VX 15/50	1.1	1.5		11.5	11	10.5	9.8	8.7	8	7.5	6.5	5.5	4.5	3.5	2

 $\mathbf{Q} = \text{F\"{o}}\text{rderstrom} \ \mathbf{H} = \text{Manometrische F\"{o}}\text{rderh\"{o}}\text{he}$

Kennlinientoleranz gemäß EN ISO 9906 Grad 3B.

POS. BESTANDTEILE **KONSTRUKTIONSMERKMALE**

GEHÄUSE Gusseisen mit Epoxid Beschichtung, mit Gewindeanschlüssen gemäß ISO 228/1

GRUNDPLATTE Edelstahl AISI 304 2

LAUFRAD Edelstahl AISI 304 in VORTEX Ausführung 3

MOTORGEHÄUSE Edelstahl AISI 304

MOTORGEHÄUSE-PLATTE Edelstahl AISI 304

6 **MOTORWELLE** Edelstahl AISI 431

WELLE MIT DOPPELTER GLEITRINGDICHTUNG GETRENNT DURCH EINE ÖLKAMMER 7

Dichtung	Welle	Position		Materialien		
Modell	Durchmesser		Fester Ring	Rotierender Ring	Elastomer	
MG1-14D SIC	Ø 14 mm	Motorseitig	Siliziumkarbid	Graphit	NBR	
	9 14 111111	Pumpenseitig	Siliziumkarbid	Siliziumkarbid	NBR	

LAGER 6203 ZZ / 6203 ZZ

KONDENSATOR

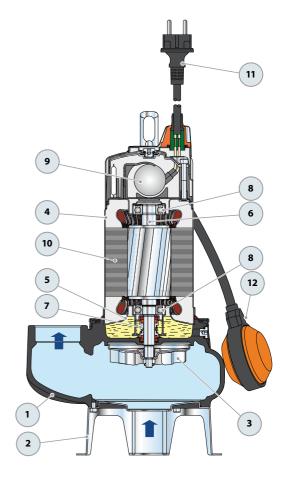
Pumpe	Kapazität	
Einphasig	(230 V or 240 V)	(110 V)
VXm 8/35		
VXm 8/50	20 μF 450 VL	30 μF - 250 VL
VXm 10/35	20 με 450 VL	30 μr - 230 VL
VXm 10/50		
VXm 15/35	25 μF 450 VL	
VXm 15/50	Δ3 μΓ 430 VL	_

10 ELEKTROMOTOR

VXm: Einphasig 230 V - 50 Hz

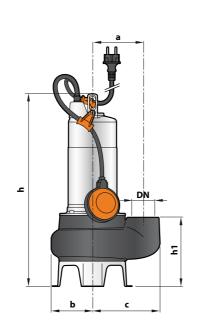
mit in der Wicklung integriertem thermischem Überlastschutz

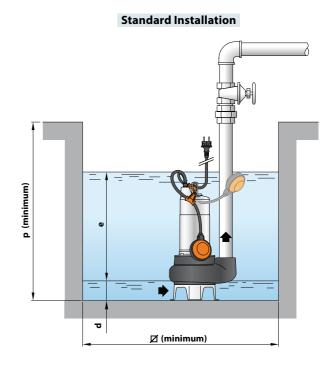
VX: Dreiphasig 400 V - 50 Hz


- Isolation: Klasse F - Schutzklasse: IP X8

STROMKABEL

Typ "H07 RN-F" (mit Schuko Stecker bei einphasiger Ausführung) Standard Länge 5 Meter (10 Meter bei VX15/35-50)


12 SCHWIMMERSCHALTER


(nur bei einphasiger Ausführung)

ABMESSUNGEN UND GEWICHT

N	IODELL	STUTZEN	Feststoff	ABMESSUNGEN mm								k	g	
Einphasig	Dreiphasig	DN	Durchgang	a	b	С	h	h1	d	e	р	Ø	1~	3~
VXm 8/35	VX 8/35						410						12.8	12.6
VXm 10/35	VX 10/35	11/2"	Ø 40 mm			148	410	139	50				13.7	12.6
VXm 15/35	VX 15/35			115	0.5		421				500	500	15.7	14.5
VXm 8/50	VX 8/50			115	95		422			einstellbar	500	500	13.3	13.1
VXm 10/50	VX 10/50	2"	Ø 50 mm			155	432	164	60				14.3	13.1
VXm 15/50	VX 15/50						446						16.1	15.0

LEISTUNGSAUFNAHME

MODELL		SPANNUNG	
Einphasig	230 V	240 V	110 V
VXm 8/35	3.5 A	3.5 A	7.0 A
VXm 10/35	4.8 A	4.8 A	11.5 A
VXm 15/35	7.4 A	7.0 A	_
VXm 8/50	3.7 A	3.6 A	7.0 A
VXm 10/50	5.0 A	4.8 A	11.5 A
VXm 15/50	7.1 A	7.0 A	_

MODELL		SPAN	NUNG	
Dreiphasig	230 V	400 V	240 V	415 V
VX 8/35	2.9 A	1.7 A	2.8 A	1.6 A
VX 10/35	3.5 A	2.0 A	3.3 A	1.9 A
VX 15/35	5.2 A	3.0 A	5.0 A	2.9 A
VX 8/50	3.1 A	1.8 A	2.9 A	1.7 A
VX 10/50	3.5 A	2.0 A	3.3 A	1.9 A
VX 15/50	5.2 A	3.0 A	5.0 A	2.9 A

PALETTIERUNG

M	IODELL	PALETTE
Einphasig	Dreiphasig	Anzahl Pumpen
VXm 8/35	VX 8/35	60
VXm 10/35	VX 10/35	60
VXm 15/35	VX 15/35	54
VXm 8/50	VX 8/50	54
VXm 10/50	VX 10/50	54
VXm 15/50	VX 15/50	54